第一部份:MATLAB 入门基础
1、简单介绍 MATLAB 的安装、版本历史与编程环境
2、MATLAB 基础操作(包括矩阵操作、逻辑与流程控制、函数与脚本文件、基本绘图等)
3、文件导入(mat、txt、xls、csv 等格式)
第二部份:MATLAB 进阶与提高
1、MATLAB 编程习惯与风格
2、MATLAB 调试技巧
3、向量化编程与内存优化
4、图形对象和句柄
第三部份:BP 神经网络
1、BP神经网络的基本原理
2、BP神经网络的 MATLAB 实现
3、案例实践
4、BP神经网络参数的优化
第四部份:RBF、GRNN 和 PNN 神经网络
1、RBF 神经网络的基本原理
2、GRNN 神经网络的基本原理
3、PNN 神经网络的基本原理
4、案例实践
第五部份:竞争神经网络与 SOM 神经网络
1、竞争神经网络的基本原理
2、自组织特征映射(SOM)神经网络的基本原理
3、案例实践
第六部份:支持向量机(Support Vector Machine, SVM)
1、SVM 分类的基本原理
2、SVM 回归拟合的基本原理
3、SVM 的常见训练算法(分块、SMO、增量学习等)
4、案例实践
第七部份:极限学习机(Extreme Learning Machine, ELM)
1、ELM 的基本原理
2、ELM 与 BP 神经网络的区别与联系
3、案例实践
第八部份:决策树与随机森林
1、决策树的基本原理
2、随机森林的基本原理
3、案例实践
第九部份:遗传算法(Genetic Algorithm, GA)
1、遗传算法的基本原理
2、常见遗传算法工具箱介绍
3、案例实践
第十部份:粒子群优化(Particle Swarm Optimization, PSO)算法
1、粒子群优化算法的基本原理
2、案例实践
第十一部份:蚁群算法(Ant Colony Algorithm, ACA)
1、粒子群优化算法的基本原理
2、案例实践
第十二部份:模拟退火算法(Simulated Annealing, SA)
1、模拟退火算法的基本原理
2、案例实践
第十三部份:降维与特征选择
1、主成分分析的基本原理
2、偏小二乘的基本原理
3、常见的特征选择方法(优化搜索、Filter 和 Wrapper 等)