Machine Learning and Recursive Neural Networks (RNN) basics
NN and RNN
Backprogation
Long short-term memory (LSTM)
TensorFlow Basics
Creation, Initializing, Saving, and Restoring TensorFlow variables
Feeding, Reading and Preloading TensorFlow Data
How to use TensorFlow infrastructure to train models at scale
Visualizing and Evaluating models with TensorBoard
TensorFlow Mechanics 101
Prepare the Data
Download
Inputs and Placeholders
Build the Graph
Inference
Loss
Training
Train the Model
The Graph
The Session
Train Loop
Evaluate the Model
Build the Eval Graph
Eval Output
Advanced Usage
Threading and Queues
Distributed TensorFlow
Writing Documentation and Sharing your Model
Customizing Data Readers
Using GPUs¹
Manipulating TensorFlow Model Files
TensorFlow Serving
Introduction
Basic Serving Tutorial
Advanced Serving Tutorial
Serving Inception Model Tutorial
¹ The Advanced Usage topic, “Using GPUs”, is not available as a part of a remote course. This module can be delivered during classroom-based courses, but only by prior agreement, and only if both the trainer and all participants have laptops with supported NVIDIA GPUs, with 64-bit Linux installed (not provided by NobleProg). NobleProg cannot guarantee the availability of trainers with the required hardware.
|