|
Applied AI from Scratch in Python培训
|
|
班级规模及环境--热线:4008699035 手机:15921673576/13918613812( 微信同号) |
坚持小班授课,为保证培训效果,增加互动环节,每期人数限3到5人。 |
上课时间和地点 |
开课地址:【上海】同济大学(沪西)/新城金郡商务楼(11号线白银路站)【深圳分部】:电影大厦(地铁一号线大剧院站) 【武汉分部】:佳源大厦【成都分部】:领馆区1号【沈阳分部】:沈阳理工大学【郑州分部】:锦华大厦【石家庄分部】:瑞景大厦【北京分部】:北京中山 【南京分部】:金港大厦
新开班 (连续班 、周末班、晚班):即将开课,详情请咨询客服。(欢迎您垂询,视教育质量为生命!) |
实验设备 |
☆资深工程师授课
☆注重质量
☆边讲边练
☆合格学员免费推荐工作
★实验设备请点击这儿查看★ |
质量保障 |
1、培训过程中,如有部分内容理解不透或消化不好,可免费在以后培训班中重听;
2、课程完成后,授课老师留给学员手机和Email,保障培训效果,免费提供半年的技术支持。
3、培训合格学员可享受免费推荐就业机会。 |
课程大纲 |
|
- Supervised learning: classification and regression
Machine Learning in Python: intro to the scikit-learn API
linear and logistic regression
support vector machine
neural networks
random forest
Setting up an end-to-end supervised learning pipeline using scikit-learn
working with data files
imputation of missing values
handling categorical variables
visualizing data
Python frameworks for for AI applications:
TensorFlow, Theano, Caffe and Keras
AI at scale with Apache Spark: Mlib
Advanced neural network architectures
convolutional neural networks for image analysis
recurrent neural networks for time-structured data
the long short-term memory cell
Unsupervised learning: clustering, anomaly detection
implementing principal component analysis with scikit-learn
implementing autoencoders in Keras
Practical examples of problems that AI can solve (hands-on exercises using Jupyter notebooks), e.g.
image analysis
forecasting complex financial series, such as stock prices,
complex pattern recognition
natural language processing
recommender systems
Understand limitations of AI methods: modes of failure, costs and common difficulties
overfitting
bias/variance trade-off
biases in observational data
neural network poisoning
Applied Project work (optional)
|
|
|
|
|
|